پیشبینی شاخص کیفیت هوا برمبنای متغیرهای هواشناسی و مولفههای خودهمبسته با استفاده از شبکه عصبی مصنوعی
Authors
Abstract:
Background: Air Quality Index (AQI) quantifies the relationship between air quality and the level of health. The value of AQI may be predicted using neural network model for a day in advance, based on the meteorological variables and autocorrelation behavior of the index in Kermanshah, a city in western Iran. Methods: Data for air pollution and meteorological variables, collected during three years, were lagged for two proceeding days. The AQI for a next day was considered as dependent variable and other were used as predictors. The performance of model was assessed with correlation coefficient (r). The most important variables to predict the AQI were identified using sensitivity analysis. Results: The r coefficient for the training, validation and testing the model was 0.75. Among the meteorological variables, the horizontal view and precipitation had a greater impact on the AQI. One day proceeding precipitation can significantly reduce the amount of AQI for the next day. An inverse relationship was found between AQI and horizontal view. Conclusion: The proposed model can be used to predict the Kermanshah’s AQI index. Regarding to the issue of air pollution in this city, especially fine particulate pollutions if such a model is used dynamically to predict the AQI, it can be useful tools for the declaration of an air pollution alert. The preparation of an online model-based system for the prediction of AQI index for Kermanshah city is suggested to be conducted in future studies.
similar resources
پیش بینی شاخص کیفیت هوا برمبنای متغیرهای هواشناسی و مولفه های خودهمبسته با استفاده از شبکه عصبی مصنوعی
زمینه و هدف: شاخص کیفیت هوا (air quality index-aqi) ارتباط کیفیت هوا را با سطوح سلامتی به صورت کمی بیان می کند. با استفاده از مدل شبکه عصبی مقدار aqi برای یک روز بعد بر مبنای متغیرهای هواشناسی و خودهمبستگی شاخص، برای شهر کرمانشاه پیش بینی شد. روش کار: بعد از آماده سازی داده های آلاینده های معیار و متغیرهای هواشناسی سال های 91-1389، تاخیرهای زمانی یک روز قبل و بعد متغیرها ایجاد شد. مقدار شاخص ...
full textطبقهبندی دمایی ایستگاههای هواشناسی کشور با استفاده از خوشهبندی فازی و شبکه عصبی مصنوعی کوهونن
چکیده طبقهبندی ایستگاههای هواشناسی موجب اختصاص حجم زیادی از اطلاعات به چند دسته متجانس کوچکتر، سهولت استفاده در مدلسازی و همچنین کمک شایانی به گسترش اطلاعات نقطهای به اطلاعات منطقهای برای نقاط فاقد آمار مینماید. در این تحقیق 112 ایستگاه هواشناسی پس از بررسیهای اولیه از بین تمام ایستگاههای سینوپتیک کشور انتخاب و سپس با استفاده از خوشهبندی فازی و شبکه عصبی مصنوعی کوهونن طبقهبندی دمائ...
full textبررسی و مدلسازی اثر آلودگی هوا بر سلامت، با استفاده از شبکه عصبی مصنوعی
Background & Objectives: Economic growth has been along with increasing energy demand in the world in addition environment pollutions which healthy life nowadays faces up with major challenges. Since there are several influential factors in this model, therefore this study designed to assess the effect of some independent socio-economic variables on the people health. Methods: An artificial ne...
full textپیشبینی آماری پهنه بندی خطر زلزله احتمالی با استفاده شبکه های عصبی مصنوعی
پیشبینی محل وقوع زلزلههای آتی همراه با تعیین درصد احتمال رخداد، میتواند در کاهش خطرات ناشی از زلزله بسیار سودمند باشد. تعیین محلهای پیشبینی شده، سبب افزایش توجه به طراحی، بهسازی لرزهای و ارزیابی قابلیت اعتمادپذیری سازههای موجود در این مکانها میشود. در پیشبینی زمان وقوع زلزله فرضیهها و نظریههای گستردهای مطرح است. هنوز شیوهای دقیق برای پیشبینی زمان رخداد زلزلههای آتی مورد تأیید ق...
full textتوسعه مدل پیشبینی غلظت ازن در هوا با استفاده از شبکه عصبی مصنوعی
با توجه به مضرات ازن بر سلامت انسان و محیطزیست و افزایش آن در دهههای گذشته، بررسی و پیشبینی میزان آن در هوا از اهمیت بالایی برخوردار است. پیشبینی غلظت ازن در هوا می تواند برای پیشگیری و کنترل توسط مسئولان استفاده شود. در این مقاله پارامترهای مهم و تأثیرگذار بر غلظت ازن با استفاده از دادههای پایش کیفیت هوا ایستگاههای آزادی و امام خمینی طی سالهای 2009 تا 2010، بررسی شده است. در این راستا م...
full textبررسی و تحلیل خشکسالی هواشناسی با استفاده از شبکه های عصبی مصنوعی در استان تهران
خشکسالی به عنوان یکی از بزرگ ترین بلایای طبیعی بشمار می آید، چه، تاثیر آن بر جوامع بشری بیش تر از دیگر بلایای طبیعی است. مطالعه در زمینه ی خشکسالی نقشی بسیار مهم در برنامه ریزی ها و مدیریت منابع آب دارد. هدف این مقاله، تحلیل و بررسی خشکسالی بر اساس داده های بارندگی سالانه در استان تهران با استفاده از آلگوریتم بدون فراسنج تحلیل مکانی شبکه های عصبی (sann) می باشد. داده های بهنجارسازی و معیار شده ...
full textMy Resources
Journal title
volume 22 issue 137
pages 31- 43
publication date 2015-11
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023